
SimSonic Suite

User’s guide for SimSonic3D

Emmanuel Bossy

November 20, 2012

1



Contents

1 Introduction 3
1.1 The SimSonic Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 About this document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Quick overview of using SimSonic3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Physical Model 4
2.1 Model Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 FDTD discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Temporal mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Spatial mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Stability condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.4 Choice of grid steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Wave generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Description of SimSonic3D 11
3.1 Overview of input and output files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 The Geometry.map3D input file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Grids in SimSonic3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 The Parameters.ini3D input file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4.1 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4.2 General parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4.4 Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4.5 Receivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4.6 Snapshots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.7 Definition of material properties . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5 Signals files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.6 Snapshots files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.7 Operating Systems and memory requirements . . . . . . . . . . . . . . . . . . . . . . . 21

3.7.1 Operating systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.7.2 Memory requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.8 How to run a simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Tutorial 23

References 24

A Physical Units in SimSonic3D 25

B SimSonic3D Matlab Toolbox 26

C File Formats 27

2



1 Introduction

1.1 The SimSonic Suite

SimSonic is freely available 3rd party software suite for the simulation of ultrasound propagation,
based on finite-difference time-domain (FDTD) computations of the elastodynamic equations. It is
intended as a tool for researchers and teachers communities. The SimSonic suite consists of several
compiled programs and C source codes, free for use and download from www.simsonic.fr, under the
GNU GPL license. In exchange for free access to the SimSonic suite, the users are asked to make
proper reference (in their research publications or any other types of oral or written communication)
to www.simsonic.fr and to Bossy et al., JASA,115, 2314-2324, 2004 (in which SimSonic has been used
for the first time).

The development of SimSonic was initiated in 2003 by Emmanuel Bossy during his PhD work at the
Laboratoire d’Imagerie Paramétrique (CNRS-University Paris 6) in Paris, France [1]. Since then, Sim-
Sonic has been maintained by Emmanuel Bossy, now at Institut Langevin, CNRS-ESPCI ParisTech,
Paris, France, and has regularly been enriched with new options and versions. SimSonic is currently
being used by several research laboratories (references). The various versions of SimSonic correspond
to different characteristics in terms of spatial dimensions and symmetries, but are otherwise based on
the same physical model. In short, SimSonic currently models linear propagation in both fluid and
solid media, which can be anisotropic and heterogeneous. Versions with absorption exist, but are still
under development and beta-testing, and are therefore not described in this document.

1.2 About this document

This document is the user’s guide for the SimSonic3D program, the 3-D version (on a cartesian mesh)
of the SimSonic software suite. It describes the physical model and computation methods on which
SimSonic3D is based, and explains how to use SimSonic3D. It also contains a tutorial section, where
various examples of simulation are described in detail, from the generation of the input files to the
visualization of the results. This version of this user’s guide is November 20, 2012, and relates to
the 2012.11.20 release of SimSonic3D. This document regularly evolves, in particular based on users
feedback. Please feel free to send all relevant comments and questions to simsonic.software@gmail.com

1.3 Quick overview of using SimSonic3D

SimSonic3D consists of a single binary executable file (either for Windows or Linux based systems).
To run a simulation, one simply has to called SimSonic3D from a line command, with a simulation
directory as argument. The simulation directory contains both input and output files (see 3.1 for a
detailed description of the various file). Running a simulation consists in the following steps

• Preparing input files. The file ”Parameters.ini3D” is a simple text file that contains most of
the simulation parameters. The geometry of the various media is coded in a binary file, Geom-
etry.map3D, as an indexed image. Various other binary files may also be needed, to describe
input signals for instance. All the input files must be contained in the same directory. A matlab
toolbox is provided with functions to write the binary files from matlab data (vectors or matrix)

• Calling SimSonic3D via the command line, with the simulation directory as argument. On
windows for instance, the call would simply look like:

SimSonic3DPath\SimSonic3D_win64_omp.exe SimulationDirectory\
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• Analyse output files (signals or snapshots) that are generated in the simulation directory. A
matlab toolbox is provided with functions to read the binary files to matlab data (vectors or
matrix).

2 Physical Model

2.1 Model Equations

In this section, the vector components of vector a are noted ai where subscripts i = {1, .., d} refer to
the direction of space, with d the space dimension (d = 3 for SimSonic3D). SimSonic3D computations
are based on the following system of elastodynamic equations, expressed in cartesian coordinates :

ρ(x)
∂vi
∂t

(x, t) =
d∑
j=1

∂Tij
∂xj

(x, t) + fi(x, t), (1)

∂Tij
∂t

(x, t) =

d∑
j=1

d∑
i=1

cijkl(x)
∂vk
∂xl

(x, t) + θij(x, t). (2)

x and t are the space and time variables. ρ(x) is the mass density and c(x) is the fourth-order rigidity
tensor. The knowledge of these parameters entirely defines the material properties and geometry of
the considered media. {vi(x, t)} are the vector components of the particle velocity field and {Tij(x, t)}
are the components of the stress tensor T(x, t). These are the unknown quantities that SimSonic
computes. {fi and θij are source terms. {fi} are the vector components of force sources and {θij}
are the tensor components of strain rate sources. Equations 1 and 2 describe the propagation of
mechanical waves in continous media which obeys Hooke’s law (Eq.2). This formulation based on the
rigidity tensor allows equally taking into account anisotropic solid media and fluid media. Absorption
is not taken into account in this model.

The symmetric rigidity tensor is usually given using Voigt notation, which allows formulating Eq. 2
under matrix form. In 3-D, such formulation writes:



∂T11
∂t
∂T22
∂t
∂T33
∂t
∂T23
∂t
∂T13
∂t
∂T12
∂t


=



c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66





∂v1
∂x1
∂v2
∂x2
∂v3
∂x3

∂v2
∂x3

+ ∂v3
∂x2

∂v1
∂x3

+ ∂v3
∂x1

∂v1
∂x2

+ ∂v2
∂x1


(3)

The form of the rigidity tensor used above is limited to a number of crystal symmetries (orthorhombic,
hexagonal, cubic, isotropic and some tetragonal class of symmetry [4]). SimSonic3D does currently
not take into account other symmetries, but straightforward modifications of the code would allow to
deal with higher order symmetries if needed.

2.2 FDTD discretization

SimSonic implements a finite-difference time-domain (FDTD) resolution of Eqs. 1 and 2. Briefly,
finite-difference methods consist in solving partial differential equations by approximating partial
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derivatives of continous functions by finite-difference. Following a numerical scheme initially intro-
duced in electromagnetism by Yee in 1966 [7], and later applied in elastodynamics by Virieux [5, 6],
SimSonic uses central-difference approximations to the space and time partial derivatives. The FDTD
elastodynamic equations are obtain from Equations 1 and 2 by approximating all first-order deriva-
tives based on the following principle:

∂f

∂a
(a) ≈

f(a+ ∆a
2 )− f(a− ∆a

2 )

∆a
). (4)

Following 4, the equations for the 3 components of the displacement velocity given by 1 yields the
following FDTD approximations:

v1(x1, x2, x3, t+ ∆t) = v1(x1, x2, x3, t) + (5a)

∆t

∆x
× 1

ρ(x1, x2, x3)
× [ T11(x1 +

∆x

2
, x2, x3, t+

∆t

2
)− T11(x1 −

∆x

2
, x2, x3, t+

∆t

2
)

+ T12(x1, x2 +
∆x

2
, x3, t+

∆t

2
)− T12(x1, x2 −

∆x

2
, x3, t+

∆t

2
)

+ T13(x1, x2, x3 +
∆x

2
, t+

∆t

2
)− T13(x1, x2, x3 −

∆x

2
, t+

∆t

2
)]

+f1.∆t

v2(x1, x2, x3, t+ ∆t) = v2(x1, x2, x3, t) + (5b)

∆t

∆x
× 1

ρ(x1, x2, x3)
× [ T21(x1 +

∆x

2
, x2, x3, t+

∆t

2
)− T21(x1 −

∆x

2
, x2, x3, t+

∆t

2
)

+ T22(x1, x2 +
∆x

2
, x3, t+

∆t

2
)− T22(x1, x2 −

∆x

2
, x3, t+

∆t

2
)

+ T23(x1, x2, x3 +
∆x

2
, t+

∆t

2
)− T23(x1, x2, x3 −

∆x

2
, t+

∆t

2
)]

+f2.∆t

v3(x1, x2, x3, t+ ∆t) = v3(x1, x2, x3, t) + (5c)

∆t

∆x
× 1

ρ(x1, x2, x3)
× [ T31(x1 +

∆x

2
, x2, x3, t+

∆t

2
)− T31(x1 −

∆x

2
, x2, x3, t+

∆t

2
)

+ T32(x1, x2 +
∆x

2
, x3, t+

∆t

2
)− T32(x1, x2 −

∆x

2
, x3, t+

∆t

2
)

+ T33(x1, x2, x3 +
∆x

2
, t+

∆t

2
)− T33(x1, x2, x3 −

∆x

2
, t+

∆t

2
)]

+f3.∆t

Following 4, the equations for the 6 components of the stress tensor given by 2 yields the following
FDTD approximations:
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T11(x1, x2, x3, t+ ∆t) = T11(x1, x2, x3, t) + (6a)

∆t

∆x
× [ c11(x1, x2, x3)[v1(x1 +

∆x

2
, x2, x3, t+

∆t

2
)− v1(x1 −

∆x

2
, x2, x3, t+

∆t

2
)]

+ c12(x1, x2, x3)[v2(x1, x2 +
∆x

2
, x3, t+

∆t

2
)− v2(x1, x2 −

∆x

2
, x3, t+

∆t

2
)]

+ c13(x1, x2, x3)[v3(x1, x2, x3 +
∆x

2
, t+

∆t

2
)− v3(x1, x2, x3 −

∆x

2
, t+

∆t

2
)]]

+θ11.∆t

T22(x1, x2, x3, t+ ∆t) = T22(x1, x2, x3, t) + (6b)

∆t

∆x
× [ c21(x1, x2, x3)[v1(x1 +

∆x

2
, x2, x3, t+

∆t

2
)− v1(x1 −

∆x

2
, x2, x3, t+

∆t

2
)]

+ c22(x1, x2, x3)[v2(x1, x2 +
∆x

2
, x3, t+

∆t

2
)− v2(x1, x2 −

∆x

2
, x3, t+

∆t

2
)]

+ c23(x1, x2, x3)[v3(x1, x2, x3 +
∆x

2
, t+

∆t

2
)− v3(x1, x2, x3 −

∆x

2
, t+

∆t

2
)]]

+θ22.∆t

T33(x1, x2, x3, t+ ∆t) = T33(x1, x2, x3, t) + (6c)

∆t

∆x
× [ c31(x1, x2, x3)[v1(x1 +

∆x

2
, x2, x3, t+

∆t

2
)− v1(x1 −

∆x

2
, x2, x3, t+

∆t

2
)]

+ c32(x1, x2, x3)[v2(x1, x2 +
∆x

2
, x3, t+

∆t

2
)− v2(x1, x2 −

∆x

2
, x3, t+

∆t

2
)]

+ c33(x1, x2, x3)[v3(x1, x2, x3 +
∆x

2
, t+

∆t

2
)− v3(x1, x2, x3 −

∆x

2
, t+

∆t

2
)]]

+θ33.∆t

T23(x1, x2, x3, t+ ∆t) = T23(x1, x2, x3, t) + (6d)

∆t

∆x
× [ c44(x1, x2, x3)[v2(x1, x2, x3 +

∆x

2
, t+

∆t

2
)− v2(x1, x2, x3 −

∆x

2
, t+

∆t

2
)]

+ c44(x1, x2, x3)[v3(x1, x2 +
∆x

2
, x3, t+

∆t

2
)− v3(x1, x2 −

∆x

2
, x3, t+

∆t

2
)]]

+θ23.∆t

T13(x1, x2, x3, t+ ∆t) = T13(x1, x2, x3, t) + (6e)

∆t

∆x
× [ c55(x1, x2, x3)[v1(x1, x2, x3 +

∆x

2
, t+

∆t

2
)− v1(x1, x2, x3 −

∆x

2
, t+

∆t

2
)]

+ c55(x1, x2, x3)[v3(x1 +
∆x

2
, x2, x3, t+

∆t

2
)− v3(x1 −

∆x

2
, x2, x3, t+

∆t

2
)]]

+θ13.∆t

T12(x1, x2, x3, t+ ∆t) = T12(x1, x2, x3, t) + (6f)

∆t

∆x
× [ c66(x1, x2, x3)[v2(x1 +

∆x

2
, x2, x3, t+

∆t

2
)− v2(x1 −

∆x

2
, x2, x3, t+

∆t

2
)]

+ c66(x1, x2, x3)[v1(x1, x2 +
∆x

2
, x3, t+

∆t

2
)− v1(x1, x2 −

∆x

2
, x3, t+

∆t

2
)]]

+θ12.∆t 6



In Eqs. 5 and 6, ∆t and ∆x are the time and spatial steps used to approximate time or spatial
derivatives according to 4. Accordingly, each variable in SimSonic3D (either velocity component or
stress tensor component) is implemented using a regular spatio-temporal mesh with time and spatial
steps of constant values ∆t and ∆x. A careful reading of Eqs. 5 and 6 further point out a fundamental
aspect of the Yee/Virieux numerical scheme implemented in SimSonic: the different components of
the velocity vector and stress tensor must be defined on staggered grids, both in space and time.

2.2.1 Temporal mesh

Regarding time: all velocity component are computed at the same instants, all stress components are
also computed at the same instants, but velocity and stress components are calculated at interleaved
instants relatively to each other. More specifically, the computation of a velocity (resp. tensor)
component at time t+∆t is explicitly derived from its value at time t and from values of the stress (resp.
velocity) components at time t+∆t/2. This type of algorithm is often referred to as leapfrog algorithm.
It is illustrated on Fig. 1, which summarize how SimSonic (or any FDTD leapfrog algorithm) works:
the algorithm starts its computation from some initial conditions given by the knowledge of the velocity
field at time t = 0 and of the stress tensor field at time t = ∆t/2. In SimSonic, the first computations
corresponds to compute the velocity field at time t = ∆t from the velocity field at time time t = 0
and the stress tensor field at time t = ∆t/2.

v v v v

T T T T
t∆

v v v v

T T T T
t∆

Figure 1: Principle of the leapfrog algorithm: staggered grids in time

2.2.2 Spatial mesh

As discussed in the previous section, the velocity and stress fields are staggered in time. Moreover, the
different variables are also staggered in space, such as each spatial finite difference may effectively be
centered. Dropping the temporal dimension, the only way to spatially organize the various variables
is shown on Fig. 2:

Figure 2: Staggered grids in 3D space
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As observed from Fig. 2, only T11,T22 and T33 happen to be at the same positions. This is coherent
with the fact that in a fluid medium, T11,T22 and T33 must actually be the same value, equal to the
opposite of the pressure in the fluid.

2.2.3 Stability condition

Intuitively, both ∆t and ∆xmust be chosen small enough to provide sufficiently smooth representations
of the computed field (see next section). The smallness of ∆t and ∆x conditions the accuracy of the
results, that is the degree of approximation introduced by the numerical method. On the other hand,
it can be shown that ∆t and ∆x cannot be chosen independently, and must obey a so-called stability
condition. The stability condition (commonly called CFL condition, from the initials of Courant,
Friedrichs and Levy) for the numerical scheme described above is given by

∆t ≤ 1√
d
.

∆x

cmax
(7)

where cmax is the largest speed of sound amongst all speeds of sound presents in the simulation
medium, and d is the space dimension (d = 3 for SimSonic3D).

2.2.4 Choice of grid steps

In practice, one usually first chooses the spatial step-size ∆x, based on accuracy criteria, and then
uses the CFL to derive ∆t and ensure stability. Accuracy and stability are completely independent
concepts: a simulation may be stable while providing poor accuracy for coarse meshes. On the other
hand, even very fine grids will yield instability if the CFL condition is not fulfilled.

The accuracy of a FDTD simulation depends on a number of factors, in addition to the step-size ∆x:
sources of error not only involve the approximation of derivative by finite difference, but also cumula-
tive errors due to the iterative nature of the method. Therefore, the longer the simulation duration, the
larger the errors. Equivalently, the larger the propagation distance, the larger the errors. One major
effect generated by most FDTD schemes is numerical dispersion, i.e. the dependence of phase veloc-
ity on frequency due to the numerical method. As an important consequence, simulated ultrasound
pulses are increasingly distorted during propagation. Accuracy criteria in FDTD therefore include
tolerance on waveform distortion, as well as on wave amplitude. The obtained accuracy depends both
on propagation distances and simulation duration. Note that numerical dispersion is not specific of
finite difference schemes but is an artifact to control with most numerical methods, in particular those
based on a discretization of the propagation domain.For second-order FDTD schemes such as used in
SimSonic, a minimum spatial-step size of typically λ/10 (i.e. ten points per wavelength) is required.
For propagation distances over several tens of wavelengths, step size as small as λ/20 may be required,
depending on the desired accuracy. Moreover, for pulsed ultrasound, the accuracy strongly depends
on the bandwidth: for a given central frequency, short (i.e. broadband) pulses will be more distorted
than quasi-harmonic waves, as a value of ∆x of one tenth of the central wavelength will correspond
to less points per wavelength for the higher frequency content. For pulsed ultrasound, the number of
points per wavelength should be determined based on the desired accuracy for the highest significant
frequency content, which equivalently corresponds to a waveform distortion criterion. The choice of
∆x is therefore highly subjective, and no general rules exist to determine ∆x. Ten grid points wave-
length should be considered a minimal requirement, that moreover remains rather subjective for pulsed
ultrasound. Note that for a homogeneous medium, the CFL condition turns the number of spatial
grid points per wavelength into number of temporal grid points per period, with some dimensionless
factor close to one. For simulations involving several media with different propagation velocities, one
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has to consider the smallest wavelength (i.e. the smallest velocity) to choose ∆x. On the other hand,
the temporal step will be derived by use of the largest velocity. For a large range of velocities, such as
encountered for simulation in both soft tissue and bone, a consequence is that the number of spatial
grid points per smallest wavelength is significantly different from the number of temporal points per
period, which increases numerical dispersion. To compensate for this additional dispersion, simulation
involving significantly different velocities requires grid steps finer than that for homogeneous media.

Although ∆x has to be small enough to fulfill accuracy requirement, it also has to be small enough in
order to correctly describe the geometry of propagation media. In FDTD methods, the use of regular
grids leads to “staircases” artifacts when originally smooth interfaces are discretized on such grids.
For instance, a plane interface that is not parallel to the coordinates axes, for instance, will have
some artificial roughness. In turn, this artificial roughness will create scattering, which amplitude
depends on the size of the “staircases” relatively to the wavelength. As for accuracy considerations in
homogeneous media, although for a different reason, ∆x has to be made small to decrease artificial
scattering.

In summary, the spatial-step size ∆x of a simulation has to be small enough to both correctly describe
the geometry of the medium and minimize numerical dispersion. Practically, it is the computational
cost that bounds the value of ∆x to some minimal value. For a space dimension d, memory require-
ments scales as hd: for fixed spatial physical dimensions, the number of points in the spatial mesh in
three dimensions for instance is multiplied by 23 = 8 when h is divided by 2. Moreover, because of the
CFL conditions, the computational time scales as ∆xd+1: dividing ∆x by a factor of 2 multiplies the
total number of calculations by 23+1 = 16 for three-dimensional simulations. From the point of view
of computational efficiency, ∆x must therefore be kept as large as possible, while being small enough
to fulfill accuracy requirements.

2.3 Wave generation

For the time-domain model described above, two approaches may be used to generate ultrasound
waves in the simulation domain. On one hand, the user may define sources that are active at some
points of the mesh during the simulation. On the other hand, the user may provide initial field values
at all grid points that will then evolve in time in source-free media. Note that it is also possible in
principle, though less frequent in practice, to use both source terms and initial conditions. The first
approach with sources can actually be further separated in two cases. Defining sources in the domain
may be done either by:

• forcing field values at some positions in space. At such points, the field is given by the user, not
calculated by the algorithm.

• adding source terms at some positions in space, as described by fi or θij in the model equation.
At such points, the field is different from the source term, and is calculated using the equations
with the sources terms.

These two ways of including sources in the model are very different: on the one hand, forcing field
values provides an easy way to generate a wave of know geometry and temporal waveform, but points
in space where field values are forced will act as scatterers for waves generated elsewhere. Using this
approach thus usually requires that the sources be turned off (the field values are not forced anymore
and obey the model equations) before any other wave (such as reflected waves) reach the source region.
Forced boundary conditions on part of the mesh boundary is often used to simulate a transducer in
contact with an object. On the other hand, a source term added to a field equation allows the linear
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superposition at the source point of the generated wave with other waves, i.e. active regions are trans-
parent to waves generated elsewhere. One drawback of using source terms, except for some simple
geometry (such as generation of plane-like wave), is that the field values are usually not related in a
simple manner to the values of the source terms. When initial value conditions are used rather than
source term, section 2.2.1 indicate that initial conditions must be given both for the velocity fields
(at time t = 0) and the stress tensor fields (at time t = ∆t/2). The approach based on initial value
conditions is well-suited for instance to start a simulation just before an incoming wave propagating
in a homogeneous medium (and of analytically known geometrical shape) is about to be scattered in
a complex manner by an object.

To conclude this section on wave generation, let us emphasize that the model equations presented
in section 2 do not model wave propagation within ultrasound transducers: in the current version of
SimSonic3D, transducers as piezo-electric materials are not taken into account as physically active
materials in the simulation domain, but are modeled by regions of space or boundary where field
values are forced or source terms are provided.

2.4 Boundary conditions

Handling a mesh in a computer means that meshes necessarily have a finite number of points, and
therefore numerical methods such as FDTD only solve the model equations in bounded regions of
space. Two situations may be considered :

(1) if the problem involves waves that are indeed physically confined within a bounded region of space,
as would be the case for a finite-size object in vacuum (into which no mechanical waves can propa-
gate), the mesh can be designed over the entire region of interest. In this case, the field variables on
the mesh boundaries must simply obey conditions that express the physics at the boundary. This has
to be done whether the problem is solved numerically on a mesh or analytically on the space continuum;

(2) on the other hand, one may want to numerically solve wave propagation phenomena in unbounded
space, or modeled as such. This is the case for instance in the study of wave scattering by a solid
object immersed in an unbounded fluid. The modeling of such unbounded domain requires specific
boundary conditions, which role is to make the mesh boundaries transparent to waves incoming from
within the simulation region.

In situation (1), Simsonic3D offers four types of boundary conditions: stress-free boundary, rigid
boundary, mirror-symmetry boundary, mirror-antisymmetry. How these boundary solution are han-
dled in SimSonic3D is described later in section 3.3 where the various grids are defined. To account for
situation (2), SimSonic3D allows defining Perfecty-Matched Layers (PML) on the simulation frontiers.
It is out of the scope of this documentation to provide details on PMLs and their FDTD implementa-
tion, which can be found in [3] for the algorithm used in SimSonic3D. It is sufficient to say that PML
are additional layers leant against the simulation boundaries, as illustrated on Fig. 3 in the case of a
simulation grid with PML all around. PML are often referred to as the most convenient way to model
unbounded domains [2], while maintaining a reasonable computational cost.
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Figure 3: Layout of the Perfectly Matched Layers around the central computation box

3 Description of SimSonic3D

3.1 Overview of input and output files

As illustrated on Figure 4, SimSonic requires input files that entirely define a simulation and computes
output files. All input files must sit in a unique directory, which will also receive the output files during
the computations.

Figure 4: Schematic overview of input (red and green) and output (gray) files involved in SimSonic3D.

There are four types of input files:

Parameters.ini3D. This file, which name cannot be changed, is a file in raw text format. It contains
most of the information input by the user, such as the time and spatial steps, the simulation duration,
the types of results to record, information on the boundary conditions, sources, etc. It is described in
detail in section 3.4.

Geometry.map3D. This file, which name cannot be changed, is a bitmap file with a SimSonic
specific format described in section 3.2. Briefly, in contains a N1 × N2 × N3 image that uniquely
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defines the geometry of the materials presents in the simulation. Each material is represented by a
8-bit value, from 0 to 255.

.sgl or .rcv3D files These two types of files, which name can be chosen by the users, contain sig-
nals that describe sources in the simulation. The extension .sgl and .rcv3D corresponds to the two
possible format used by SimSonic, described in detail in appendix C. Files with extension .sgl contain
only a single waveform, that will be used by sources terms described in Parameters.ini3D. The .rcv3D
format corresponds to the format of signals received or emitted on 2D-array transducers. A .rcv3D
file not only contains the signals for each element of the array, but also all the array parameters such
as location, pitch, sampling frequency, etc. There may be as many input signals files as needed to
describe all the sources in the simulation.

There are three types of output files:

.snp3D files One .snp3D file contains one 3D ”image” of a particular field variable at one given
time, referred to as a “snapshot” in this documentation. It contains not only the field values, but also
a header with various information such as time, type of variable, spatial grid step, temporal grid step,
etc. The format of .snp3D files is given in detail in Appendix C and section 3.6 discusses how to read
.snp3D files using the matlab toolbox.

.snp2D files .snp2D files contain 2D sections from 3D grids. They are identical to full field snapshot
produced by SimSonic2D. The format of .snp2D files is given in detail in Appendix C and section 3.6
discusses how to read .snp2D files using the matlab toolbox.

.rcv3D files The .rcv3D format corresponds to the format of signals received or emitted on 2D-array
transducers. A .rcv3D file not only contains the signals for each element of the array, but also all the
array parameters such as location, pitch, sampling frequency, etc. Section 3.5 discusses how to read
.rcv3D files using the matlab toolbox.

The specific formats of each file are described in detail in Appendix C. However, it is not necessary
to the users to be aware of those format: the Matlab toolbox provided with SimSonic3D contains all
the necessary .m files that allow reading data from SimSonic3D files to Matlab and writing data from
Matlab to SimSonic3D.

3.2 The Geometry.map3D input file

This file, which name must not be changed, is a binary file with a specific format described in appendix
C. Briefly, in contains a N1×N2×N3 bitmap image that uniquely defines the geometry of the materials
presents in the simulation. Each material is represented by a 8-bit value, from 0 to 255. In practice,
the user may use the Matlab SimSonic3D toolbox to create a N1 ×N2 ×N3 matrix MAP of class uint8
and call SimSonic3DWritemap3D(MAP,’SimulationDirectory\Geometry.map3D’)

3.3 Grids in SimSonic3D

Grids layout and sizes. In SimSonic3D, the spatial dimensions of the simulation are entirely and
uniquely defined via the Geometry.map3D file, which contains N1×N2×N3 voxels (see 3.2). However,
as discussed in section 2.2.2, each field variable has its specific grid. As a consequence, there are in
principle different possibilities to define staggered grids from a N1 ×N2 ×N3 image. It is absolutely
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fundamental for SimSonic users to understand precisely how the rectangular simulation grids are de-
fined in SimSonic3D. From a N1 × N2 × N3 image given in Geometry.map3D, SimSonic defines the
following grids for each field variables:

variable dimensions X1 ×X2 ×X3

T11,T22,T33 N1 ×N2 ×N3

T12 (N1 + 1)× (N2 + 1)×N3

T23 N1 × (N2 + 1)× (N3 + 1)
T13 (N1 + 1)×N2 × (N3 + 1)
v1 (N1 + 1)×N2 ×N3

v2 N1 × (N2 + 1)×N3

v3 N1 ×N2 × (N3 + 1)

The rationale for those dimensions can be understood by considering that the grids in SimSonic3D are
built from a 3D geometry which 3D voxels have the structure of Fig. 5. As a consequence, the outer
boundaries in SimSonic3D are similar to the outer surface of the voxel shown on Fig. 5: the simulation
boundaries are planes which contain only the normal component of the displacement velocity, and two
extra-diagonal components of the stress tensor. For instance, the boundary perpendicular to direction
1 contains only values of v1, T12 and T13.

Figure 5: Elementary 3D voxel in SimSonic3D

Field coordinates. The spatial layout of the grid is something very important that should always be
kept in mind when setting up a simulation: in particular, proper positioning of source terms and
measurement points can only be achieved with the grids layout in mind. The convention
used in SimSonic for the points coordinates are the following:

• the first element of a vector has an index of 0 (C language convention, as opposed to Matlab for
instance which uses index 1 for the first element of a vector).

• All coordinates are integer numbers, and refers to a specific grid. As a consequence of the
staggered-grids layout, although T11(0, 0, 0), Tij(0, 0, 0) (i 6= j) and vi(0, 0, 0) all have the same
coordinates, they corresponds to variables located at different positions in space.
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Material properties for heterogeneous domain In SimSonic3D, the users define materials prop-
erties via a N1 × N2 × N3 image. As clear from 5, all variables except T11, T22 and T33 are located
on:

• the common face of two neighboring voxels for velocity components

• the common edge of four neighboring voxels for Tij components with (i 6= j).

It may be seen from Eqs. 6 and 5 that this requires defining averaged properties for values of the
density and values of cαβ, as the user only provides one value per voxel.

• Density values are always required at faces between two adjacent voxels, and are defined as the
arithmetic average of the density values defined by the user at each of the two voxels.

• cαβ values are always required at edges that belong to four adjacent voxels, and are defined as
the harmonic average of the cαβ values defined by the user at each of the four voxels.

N.B.: The way the material properties are averaged for interfaces between different media is actually
one of the most fundamental specificities that explains why boundary condition conditions between
different media are implicitly verified, even in the case of fluid/solid interfaces.

3.4 The Parameters.ini3D input file

3.4.1 Principle

The Parameters.ini3D file, which name must not be changed, is a file in raw text. It can be read and
edited with simple text editors such as wordpad under Windows or vi or emacs on Linux systems. As
a Matlab toolbox is provided to conveniently SimSonic, Matlab is relevant to read and edit Parame-
ters.ini3D. This file contains most of the information input by the user.

The way SimSonic reads this file is rather crude: SimSonic searches for pre-defined ”code” strings in
the text file, such as ”Grid Step” for instance. Once the line containing the searched string is found,
SimSonic reads the parameter found at position 31 on the line: as a general rule, the position of the
parameter in Parameters.ini3D that is found after a ”code” string on a line should always remain
at the same position. The order in which the various ”code” strings and sections appears
in the file is not important. For all input parameters, SimSonic has built-in default values, that
are used if fields are missing in the Parameters.ini3D file. As a consequence, a Parameters.ini3D file
may have very little information, which helps in terms of readability, but the users must keep in mind
default values.

Specifications and requirements for the various parameters are detailed thereafter. Provided that the
user follows these requirements, any line of comments may be added to Parameters.ini3D to improve
its readability. Although not mandatory, it is recommended that any line of comments begins with
%, as it allows to easily discriminate between comments and input data when using Matlab to read
and edit Parameters.ini3D.

Important: the natural system of units for MHz ultrasonics is mm, µs and mg. In the following,
it is this system of units which is used, along with all the corresponding derived units (MHz, GPa,
etc.). However, any system of units consistent with this one (such as stress and velocity numerical
values are unchanged) may be used. An example of a such a system, relevant to geophysics, is given
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in appendix A.

The following sections describe in detail the various parameters contained in Parameters.ini3D.

3.4.2 General parameters

Grid Step is the value of the spatial grid step ∆x , expressed in mm. [Default=0.1]

Vmax is a speed of sound value that must be larger that any encountered speed of sound in the
simulation domain, expressed in mm.µs−1. This value is extremely important, as it is used by
SimSonic to derive the time step ∆T from ∆x, in accordance with the CFL stability condition
(see DeltaT Coefficient thereafter). Note that Vmax may be different from the actual largest
speed of sound in the simulation, provided that the CFL condition remains verified.[Default=1.5]

CFL Coefficient is the value of a multiplicative coefficient α used to compute the time step ∆t,
according to the following equation [Default=0.99]:

∆t = α× ∆x√
3 ·Vmax

(8)

If Vmax does correspond to the actual largest speed of sound in the simulation, then the CFL
condition requires that α ≤ 1. In practice, this value should be strictly less than one, 0.99 for
instance.

As a consequence of Eq. 8, the user controls ∆t through both α and Vmax. In most situation, the
user will choose Vmax as the exact value for the largest speed of sound present in the simulation,
and α = 0.99. However, if a user wants to run several simulations with different media (such as
a simulation with scatterers and a reference simulation without scatterers), but with the same
∆t, he/she should use the same Vmax and α for all the simulations. Most importantly, when
a user makes a signal files (.sgl file for instance), it should be kept in mind that the sampling
frequency used to build the signal must correspond to the value of ∆t derived from Eq. 8 with
the parameters used in Parameterers.ini3D.

Simulation Length is the duration of the simulated propagation, expressed in µs[Default=0.0]. If
this value is not a multiple of the time step ∆t, it is automatically rounded by SimSonic.

3.4.3 Boundary conditions

In SimSonic3D, the boundary conditions are given on six lines, named conventionally X1 low, X1 high,X2 low,
X2 high X3 low and X3 high.
The behavior of each boundary is defined by a number:

• 0 : a PML layer is defined against to the boundary. [Default value]

• 1 : the boundary behaves as a symmetric mirror

• 2 : stress-free boundary

• 3 : rigid boundary

If one or more PMLs are used, they will all have the same properties defined by the following parameters
(if no PML are used, these parameters are just not used by SimSonic3D):
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PML Thickness is the PML dimension along the boundary normal, expressed in number of grid
step ∆x .[Default=20]

Vmax in PML is the highest of speed of sounds values in materials in contact with PML, expressed
in mm.µs−1.[Default=1.5]

PML Efficiency is the requested PML efficiency, expressed in dB. A value of 80 dB means that the
wave reflected by the PML is expected to be 80 dB below the amplitude of a incident wave, in
the case of normal incidence. [Default=80]

In a continuous world, PMLs are perfectly matched layer. Because of the space discretization in
numerical methods such as FDTD or FEM (Finite Element Method), the PML loose their perfectness
in such approaches. As a consequence, PML in SimSonic have a finite efficiency, that can be expressed
as a coefficient of reflection. In practice, the maximum efficiency of a PML depends on the thickness
of the PML relatively to the wavelength of the incident wave. As a rule of thumb, a PML should
have a thickness of at least one wavelength in order to get an efficiency of several tens of dB for
normal incidence. If a user requests a theoretical efficiency larger than that reachable given the PML
thickness, the PML will simply not work as efficiently as expected. Moreover, the efficiency of the
PML decreases from its maximum in normal incidence to zero for grazing incidence. Setting the PML
parameters turns out to be very much based on the user experience. The PML in SimSonic3D are
built on the approach described in detail in [3].

3.4.4 Sources

In SimSonic3D, the geometry of a simple source object is a 2-D plane array, which properties are listed
below

• The array normal is aligned along one of the direction of the mesh (direction 1, 2 or 3). By
convention, the normal direction is referred to as direction I. The two in-plane direction are
direction J and K, with the following correspondance:

– I=1 → J=2 and K=3

– I=2 → J=3 and K=1

– I=3 → J=1 and K=2

• The array has NJ ×NK identical elements equally distributed

• Each element may consist of a unique grid point or have some widths along directions J and/or K

There are currently two possible ways to define sources in SimSonic3D:

1. The user may define the geometrical parameters of an emitters array in the Parameters.ini3D
file. In this case, the signal emitted by all the elements are based on a unique signal defined
in a .sgl file, which name is specified in the definition of the array. In the current version of
SimSonic3D, options in the definition of the array allows applying linear delays or apodization
coefficients on the elements of the array (see below).

2. The user may provide a .rcv3D file which contains all the information about the array geometry,
and as many signals as the number of elements in the array. The .rcv3D format also corresponds
to the format of signals received on 2D-array receivers transducers (hence the .rcv3D extension,
3D referring to SimSonic3D).
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The parameters related to emission sources defined in the Parameters.ini3D file (case 1.) are listed
below:

Type of Source Terms This value is set to 1 or 2 depending on how SimSonic3D considers source
signals: 1 corresponds to use input signals as source terms in the equations for the corre-
sponding variables. 2 corresponds to use input signals as forced values of the corresponding
variables.[Default=1]

Number of VAR arrays VAR may be either T11, T22, T33, T12, T23, T31, V1, V2 or V3. [De-
fault=0] This value is an integer indicating how many emitters arrays (for variables VAR) are
going to be defined in the following lines of the Parameters.ini3D file. The definition of one array
is given on 6 lines, and has the following structure:

-1 Filename
Array normal
x1 start x2 start x3 start
NBElts J Pitch J Width J Apodisation J unused Deflection J
NBElts K Pitch K Width K Apodisation K unused Deflection K
unused Velocity

filename is the name of the .sgl file containing the signal that will be used by the array. -1
is an internal code for SimSonic3D, which must precede the file name. The file must be
located in the simulation directory.

Array normal This number, equal to 1, 2 or 3, indicates the direction of the normal to the
array plane.

x1 start expressed in grid coordinates (integer), is the coordinate along direction 1 of the array
element with the smallest coordinate.

x2 start expressed in grid coordinates (integer), is the coordinate along direction 2 of the array
element with the smallest coordinate.

x3 start expressed in grid coordinates (integer), is the coordinate along direction 3 of the array
element with the smallest coordinate.

NBElts J Number NJ of (identical) elements along the direction J

NBElts K Number NK of (identical) elements along the direction K

Pitch J expressed in number of grid steps (integer), is the array pitch (center to center distance
between two consecutive elements) along the direction J

Pitch K expressed in number of grid steps (integer), is the array pitch (center to center distance
between two consecutive elements) along the direction K

Width J expressed in number of grid steps (integer), is the width of each element along the
direction J.

Width K expressed in number of grid steps (integer), is the width of each element along the
direction K. Each element is spread over Width J×Width K grid points, which behave in
the same way during the signal emission.

Apodization J 0 or 1. If set to 1, the signal amplitude is apodized on each element along the
direction J based on a Hann window. This value must be set to 0 if the array only has one
element.
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Apodization K 0 or 1. If set to 1, the signal amplitude is apodized on each element along the
direction K based on a Hann window. This value must be set to 0 if the array only has one
element. The apodization factor on each element is the product of the apodization along
the directions J and K .

unused Must be left to 0 in the current version of SimSonic3D.

Deflection J expressed in degrees (floating point number), controls the emission angle in the
IJ plane, for plane wave emission. It corresponds to add delays varying linearly with the
element positions along the dimension J. This value may be positive or negative.

Deflection K expressed in degrees (floating point number), controls the emission angle in the
IK plane, for plane wave emission. It corresponds to add delays varying linearly with the
element positions along the dimension K. This value may be positive or negative.

unused Must be left to 0 in the current version of SimSonic3D.

Velocity is the velocity expressed in physical velocity units (floating point number, usually
mm/µs) used to calculate the delays for focusing or deflection. It should therefore corre-
spond to the velocity of the homogeneous medium in which the array is located.

Number of VAR Array Source Files VAR may be either T11, T22, T33, T12, T23, T31, V1, V2
or V3. [Default=0] This value N is an integer indicating how many emitters arrays (for variables
VAR) are going to be defined from .rcv3D files. Directly following this line, there must be N
file names corresponding to each array.

IMPORTANT REMARKS ON DEFINING SOURCES

The users has a complete freedom to define sources. However, consistency is not checked by the
software. The following points (not an exhaustive list...) should be kept in mind:

• The users should be aware that in a fluid medium, T11, T22 and T33 always have the same value.
Therefore, sources array for T11, T22 and T33 should always be identical. This is left to the
responsibility of the user: if not verified, the code will run, but the results should not be trusted.

• Particular attention should be paid for emitters arrays located on or close to domain boundaries.
If a user defines sources on a boundary for which the boundary condition forces values to zero,
the emitters array will be overridden by the boundary condition.

• Except for T11, T22 and T33 in fluids, there should normally be only one array defined at a given
location of the domain. In particular, a user will usually define either velocity sources or stress
sources at a given location.

3.4.5 Receivers

As for emitters arrays, the geometry of a single receiver object is a 2D plane array, which properties
are listed below :

• The array normal is aligned along one of the direction of the mesh (direction 1, 2 or 3). By
convention, the normal direction is referred to as direction I. The two in-plane directions are
direction J and K, with the following correspondance:

– I=1 → J=2 and K=3
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– I=2 → J=3 and K=1

– I=3 → J=1 and K=2

• The array has NJ ×NK identical elements equally distributed

• Each element may consist of a unique grid point or have some widths along directions J and/or K

The information required from the user to define receivers arrays are the following :

Number of VAR arrays VAR may be either T11, T22, T33, T12, T23, T31, V1, V2 or V3. [De-
fault=0] This value is an integer indicating how many emitters arrays (for variables VAR) are
going to be defined in the following lines of the Parameters.ini3D file. The definition of one array
is given on 4 lines, and has the following structure:

Filename
Array normal
x1 start x2 start x3 start
NBElts J Pitch J Width J
NBElts K Pitch K Width K

filename is the name of the .rcv3D file in which the signals will be recorded. The file will be
written in the simulation directory.

Array normal This number, equal to 1, 2 or 3, indicates the direction of the normal to the
array plane.

x1 start expressed in grid coordinates (integer), is the coordinate along direction 1 of the array
element with the smallest coordinate.

x2 start expressed in grid coordinates (integer), is the coordinate along direction 2 of the array
element with the smallest coordinate.

x3 start expressed in grid coordinates (integer), is the coordinate along direction 3 of the array
element with the smallest coordinate.

NBElts J Number NJ of (identical) elements along the direction J

NBElts K Number NK of (identical) elements along the direction K

Pitch J expressed in number of grid steps (integer), is the array pitch (center to center distance
between two consecutive elements) along the direction J

Pitch K expressed in number of grid steps (integer), is the array pitch (center to center distance
between two consecutive elements) along the direction K

Width J expressed in number of grid steps (integer), is the width of each element along the
direction J.

Width K expressed in number of grid steps (integer), is the width of each element along the
direction K. Each element is spread over Width J×Width K grid points: the signal recorded
on each element corresponds to the sum of the signals measured on each Width J×Width K
grid points. In other words, each element is integrating over its area.
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3.4.6 Snapshots

2D Snapshots Record Period expressed in physical time units (floating point number, usually µs).
This value is the time interval between 2D snapshots.[Default=1]

3D Snapshots Record Period expressed in physical time units (floating point number, usually µs).
This value is the time interval between 3D snapshots.[Default=1]

Record 3D VAR Snapshots 0 or 1. VAR may be either T11, T22,T33, T12, T23, T31, V1, V2,
V3 or V. 1 indicates that VAR snapshots will be recorded with the time interval defined by 3D
Snapshots Record Period.[Default=0]

Record 2D VAR Snapshots 0 or 1. VAR may be either T11, T22,T33, T12, T23, T31, V1, V2,
V3 or V. 1 indicates that VAR snapshots will be recorded with the time interval defined by 2D
Snapshots Record Period.[Default=0]

Remark: The displacement velocity V =
√
v2

1 + v2
2 + v2

3 is not a field variable, but is derived in
the software from the computations of v1, v2 and v3. However, as v1, v2 and v3 are not defined
on the same spatial grids, V is an averaged value over 6 pixels, defined by

V 2(i, j, k) =

(
1

2
[v1(i, j, k) + v1(i+ 1, j, k)]

)2

+

(
1

2
[v2(i, j, k) + v2(i, j + 1, k)]

)2

+

(
1

2
[v3(i, j, k) + v3(i, j, k + 1)]

)2

V snapshots have size N1 ×N2 ×N3. The value of V may be meaningless at interfaces between
different media, in particular fluid/solid interfaces where the tangential velocity is discontinuous.

3.4.7 Definition of material properties

The Geometry.map3D file contains N1 × N2 × N3 integer values that refer to media which material
properties are described in the Parameters.ini3D file. These properties are defined for each material by
the users, in a list located between two lines that contains ”Starts Materials List” and ”Ends Materials
List”. One material is defined on one line with the following structure:

Index Density C11 C22 C33 C12 C23 C31 C44 C55 C66

Index are integer values ranging from 0 to 255, and all the physical properties are real values defined
in consistent physical units (usually mg/mm3 for density, GPa for Cαβ).
By default, all indexes correspond to materials with the following properties, typical of values for water:

Index 1 2.25 2.25 2.25 2.25 2.25 2.25 0 0 0

The user should make sure that all indexes present in Geometry.map3D are defined in the materials
list. All indexes with no explicit definition will have the default properties (those of water).
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3.5 Signals files

As previously introduced in Section 3.1, they are two types of signal files used by SimSonic.

The .sgl files are input files that contain a unique signal intended to be used by arrays which pa-
rameters are directly defined in the Parameters.ini3D file. The format of .sgl file is described in Ap-
pendix C. In practice, the user may use the Matlab SimSonic3D toolbox to create a signal Waveform
of class double and call SimSonic3DWriteSgl(Waveform),’FileName’) to write .sgl files, or call
[Signal,NbPts]=SimSonic3DReadSgl(’signal.sgl’) to read .sgl files.

The .rcv3D files are either input or output files. The .rcv3D format corresponds to the format of
signals received or emitted on 1D-array transducers. A .rcv3D file contains all the geometrical param-
eters required to define an array (see sections 3.4.4 and 3.4.5), as well as the temporal grid step, the
spatial grid steps, the number of points in the recorded signals, and the signals corresponding to each
elements. The format of .rcv file is described in Appendix C.

In practice, the user may use the Matlab SimSonic3D toolbox to create and read .rcv3D files. From
a matlab structure array , the user may call SimSonic3DWritercv3D(array),’FileName’) to write
a ’FileName’ file with .rcv3D format. A Filename file with .rcv3D format may be read into a matlab
structure array by calling array=SimSonic3DReadrcv3D(’FileName’).

3.6 Snapshots files

As previously introduced in Section 3.1, SimSonic3D uses both .snp2D and .snp3D files to record snap-
shots of field variables at a given time. The .snp2D/.snp3D formats, described in Appendix C, contains
not only the field values, but also a header with the following information: dimensions of the snapshot
(depending on the recorded variables, see section 3.3), time of the snapshot, temporal grid step and
spatial grid step. In practice, the user may use the Matlab SimSonic3D toolbox to read .snp2D/.snp3D
files into a matlab structure SNAPSHOT by calling SNAPSHOT=SimSonic3DReadSnp3D(FILENAME) or
SNAPSHOT=SimSonic3DReadSnp2D(FILENAME).

Recording of .snp3D should be done with care: this files are usually very large, and recording many
3D snapshots may quickly lead to saturate disk space...

3.7 Operating Systems and memory requirements

3.7.1 Operating systems

SimSonic is programed in C, and can therefore be compiled and executed on any platform, using
operating systems such as Windows or Linux. SimSonic’s code includes OpenMP directives, allowing
SimSonic to run in parallel on several CPUs sharing a common memory. Users may find several pre-
compiled executables on www.simsonic.fr, for both Windows and Linux systems and both 32-bit and
64-bit versions. SimSonic does currently not support MPI, and can therefore be ran only on clusters
of CPU sharing a common RAM memory.

3.7.2 Memory requirements

The dimensions of SimSonic simulations are only limited by the available RAM. Simulations that
requires more than typically 4 GB of RAM must be ran with 64-bit versions of SimSonic on 64-bit
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operating systems. Simulations with requirement below typically 2 GB may be run on 32-bit systems
with 32-bit version of SimSonic.

The RAM needed for a simulation with grid dimensions N1×N2 and with a PML thickness of W grid
points can be approximated by the following formula:

RAM(MB) =
36

10242
× [N1N2N3 + 8W 3 + 4W 2(N1 +N2 +N3) + 2W (N1N2 +N2N3 +N3N1)] (10)

This formula holds when SimSonic computes fields variables with float precision (4 bytes). Although
it is generally not needed in terms of precision, SimSonic may also used double precision (8 bytes), in
which case the memory requirement is twice as that indicated in the above formula.

3.8 How to run a simulation

Running a simulation is straightforward: once all the required input files (Parameters.ini3D, Geome-
try.map3D, .sgl and/or .rcv3D) have been created and placed in a directory named SimulationDirec-
tory, the user simply has to launch SimSonic3D from a command line with SimulationDirectory as
argument, immediatly followed by a forward slash “/” or reverse slash ”\”, depending on the operating
system. On Windows, the command line would look like

SimSonic3DPath\SimSonic3D_win64_omp.exe SimulationDirectory\

On Linux, the command would look like

SimSonic3DPath/SimSonic3D_gcc64_omp SimulationDirectory/

Windows-compiled versions are provided with or without OpenMP capabilities. For the OpenMP ver-
sions, the user may indicate the number of processors to use by setting the value of OMP_NUM_THREADS.
For instance, to use two processors, use the following command line BEFORE running SimSonic3D:

SET OMP_NUM_THREADS=2

If this value is not set explicitly, the program will use the largest number of processors available.

The provided Linux-compiled version is for 64-bit systems with OpenMP. The number of processor
to use can also be set by the user, in a way that usually depends on how jobs are launched on the system.

Once a simulation has been successfully launched, the software outputs information, either directly
on the screen or in an output file, depending on the operating system. On Windows, the following
information appear on the screen right after the computation has started:

Running SimulationDirectory\

Started on : Thu Dec 29 15:36:44 2011
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When the simulation is completed, the following information is displayed:

Running SimulationDirectory\

Started on : Thu Dec 29 15:36:44 2011

Ended on : Thu Dec 29 15:36:56 2011

Total computation time: 0h 0min 12sec

It is also possible to get information during the computation by using the following optional argument

SimSonic3DPath/SimSonic3D SimulationDirectory/ info

During the simulation, the following information is displayed, updated at each time step:

Running SimulationDirectory\

Started on : Thu Dec 29 15:36:44 2011

Computed: 0.5/1.0 us <--> Step: 67/114 Remaining time: 0h 0min 6sec

When the simulation is completed, the screen looks like the following:

Running SimulationDirectory\

Started on : Thu Dec 29 15:36:44 2011

Computed: 1.0/1.0 us <--> Step: 114/114 Remaining time: 0h 0min 0sec

Ended on : Thu Dec 29 15:36:56 2011

Total computation time: 0h 0min 12sec

Note that the indicated remaining time is only an estimation, which is quite poor at the beginning of
the simulation, and improves during the course of the computation.

4 Tutorial

This section is still under preparation. The reader is invited to check examples available at www.simsonic.fr
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A Physical Units in SimSonic3D

SimSonic has initially been developed to simulate ultrasonic propagation in the MHz frequency range.
Accordingly, its system of units is different from the International Systems of Units. One coherent
system of units, well suited for MHz ultrasonics,is given in the following table:

base system some derived units

Quantity length time mass stress mass density velocity frequency force viscosity
Unit mm µs mg GPa mg.mm−3 mm.µs−1 MHz kN kPl

All examples described in this document or on the website have been designed within this system of
units. For geophysics simulations, the following system of units is consistent in SimSonic:

base system some derived units

Quantity length time mass stress mass density velocity frequency force viscosity
Unit km s Gt GPa Gt.km−3 km.s−1 Hz PN GPl

For simulations on the kHz range, the following system of units is consistent in SimSonic:

base system some derived units

Quantity length time mass stress mass density velocity frequency force viscosity
Unit m ms t GPa t.m−3 m.ms−1 kHz GN MPl

For simulations on the µm scale, the following system of units is consistent in SimSonic:

base system some derived units

Quantity length time mass stress mass density velocity frequency force viscosity
Unit µm ns pg GPa pg.µm−3 µm.ns−1 GHz mN Pl

For simulations on the nanometer scale, the following system of units is consistent in SimSonic:

base system some derived units

Quantity length time mass stress mass density velocity frequency force viscosity
Unit nm ps 10−21g GPa 10−21g.nm−3 nm.ps−1 THz nN mPl

In all these systems of units, material properties such as mass density, rigidity constants and speeds
of sound have the same numerical values (of the order of one).
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B SimSonic3D Matlab Toolbox

The SimSonic3D Matlab toolbox contains all the necessary tools to prepare (write functions) and
analyse (read functions) a simulation. In particular, this toolbox eliminates the need to know any-
thing about the file formats used by SimSonic3D. The documentation of the functions listed in table
1 below may be found by use of the help command in Matlab, or directly in the .m files.

type function name

read functions

SimSonic3DReadmap3D
SimSonic3DReadrcv3D
SimSonic3DReadSnp3D
SimSonic3DReadSnp2D

SimSonic3DReadSgl

write functions
SimSonic3DWritemap3D
SimSonic3DWritercv3D

SimSonic3DWriteSgl

Table 1: Basic Matlab SimSonic3D functions
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C File Formats

This section describes the formats of input and output files used by SimSonic3D. It is intended for
users who may want to use their own code to create and read SimSonic files. However, the SimSonic3D
matlab toolbox (see Appendix B) provides all the necessary functions to handle SimSonic3D files, and
Matlab users should therefore not pay attention to file formats used by SimSonic.

Important: ordering convention for multi-dimensional data. In all relevant files, 3-D N1 ×
N2 × N3 data are ordered in the following way: the first element encoutered in the file is (0, 0), the
last element is (N1 − 1, N2 − 1, N3 − 1). In between, elements are row-major ordered, i.e. the second
dimension (N3) is contiguous in the file.

• geometry file: .map3D

– one integer (4 bytes) giving the value of N1.

– one integer (4 bytes) giving the value of N2.

– one integer (4 bytes) giving the value of N3.

– N1 ×N2 ×N3 chars (1 byte per char)

• single signal file: .sgl

– one integer (4 bytes) giving the number N of signal points.

– N double (8 bytes per double). The first point in the file corresponds to the first point in
time.

• array signal file: rcv3D

– one char (1 byte) giving the array normal (’1’,’2’ or ’3’).

– one integer (4 bytes) giving the number NJ of array elements along the direction J.

– one integer (4 bytes) giving the number NK of array elements along the direction K.

– one integer (4 bytes) giving x1 start.

– one integer (4 bytes) giving x2 start.

– one integer (4 bytes) giving x3 start.

– one integer (4 bytes) giving the elements width along the direction J.

– one integer (4 bytes) giving the elements width along the direction K.

– one integer (4 bytes) giving the array pitch along the direction J.

– one integer (4 bytes) giving the array pitch along the direction K.

– one double (8 bytes) giving the spatial step ∆x.

– one double (8 bytes) giving the number Nt of signal points.

– one double (8 bytes) giving the temporal step ∆t.

– NJ ×NK ×Nt doubles (8 bytes per double).

• snapshot file: .snp2D. This file format is the one used by SimSonic2D. As a consequence, the
files contain no information relative to 3D, such as the plane direction and location, which are
indicated in the file name when the files are written.

27

http://en.wikipedia.org/wiki/Row-major_order


– one integer (4 bytes) giving the size N1.

– one integer (4 bytes) giving the size N2.

– one double (8 bytes) giving the snapshot time (in physical time unit, usually µs).

– one double (8 bytes) giving the spatial step ∆x.

– one double (8 bytes) giving the temporal step ∆t.

– X1 ×X2 floats (4 bytes per double).

• snapshot file: .snp3D

– one integer (4 bytes) giving the dimension N1.

– one integer (4 bytes) giving the dimension N2.

– one integer (4 bytes) giving the dimension N3.

– one double (8 bytes) giving the snapshot time (in physical time unit, usually µs).

– one double (8 bytes) giving the spatial step ∆x.

– one double (8 bytes) giving the temporal step ∆t.

– N1 ×N2 ×N3 floats (4 bytes per double).
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